Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339086

RESUMO

Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). HIV protease, reverse transcriptase, and integrase are targets of current drugs to treat the disease. However, anti-viral drug-resistant strains have emerged quickly due to the high mutation rate of the virus, leading to the demand for the development of new drugs. One attractive target is Gag-Pol polyprotein, which plays a key role in the life cycle of HIV. Recently, we found that a combination of M50I and V151I mutations in HIV-1 integrase can suppress virus release and inhibit the initiation of Gag-Pol autoprocessing and maturation without interfering with the dimerization of Gag-Pol. Additional mutations in integrase or RNase H domain in reverse transcriptase can compensate for the defect. However, the molecular mechanism is unknown. There is no tertiary structure of the full-length HIV-1 Pol protein available for further study. Therefore, we developed a workflow to predict the tertiary structure of HIV-1 NL4.3 Pol polyprotein. The modeled structure has comparable quality compared with the recently published partial HIV-1 Pol structure (PDB ID: 7SJX). Our HIV-1 NL4.3 Pol dimer model is the first full-length Pol tertiary structure. It can provide a structural platform for studying the autoprocessing mechanism of HIV-1 Pol and for developing new potent drugs. Moreover, the workflow can be used to predict other large protein structures that cannot be resolved via conventional experimental methods.


Assuntos
Infecções por HIV , HIV-1 , Produtos do Gene pol do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Infecções por HIV/tratamento farmacológico , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Poliproteínas/genética , DNA Polimerase Dirigida por RNA/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/química
2.
PLoS One ; 18(11): e0287829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910521

RESUMO

Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3% without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.


Assuntos
Infecções por HIV , HIV-1 , Interleucina-27 , Humanos , Internalização do Vírus , Interleucinas/metabolismo , Monócitos , Autofagia/genética , DNA/metabolismo , Células Dendríticas/metabolismo , Replicação Viral , Espectrina/metabolismo
3.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005822

RESUMO

Herpes Simplex Virus type 1 (HSV-1) infects humans and causes a variety of clinical manifestations. Many HSV-1 genomes have been sequenced with high-throughput sequencing technologies and the annotation of these genome sequences heavily relies on the known genes in reference strains. Consequently, the accuracy of reference strain annotation is critical for future research and treatment of HSV-1 infection. In this study, we analyzed RNA-Seq data of HSV-1 from NCBI databases and discovered a novel intron in the overlapping coding sequence (CDS) of US10 and US11, and the 3' UTR of US12 in strain 17, a commonly used HSV-1 reference strain. To comprehensively understand the shared US10/US11/US12 intron structure, we used US11 as a representative and surveyed all US11 gene sequences from the NCBI nt/nr database. A total of 193 high-quality US11 sequences were obtained, of which 186 sequences have a domain of uninterrupted tandemly repeated RXP (Arg-X-Pro) in the C-terminus half of the protein. In total, 97 of the 186 sequences encode US11 protein with the same length of the mature US11 in strain 17:26 of them have the same structure of US11 and can be spliced as in strain 17; 71 of them have transcripts that are the same as mature US11 mRNA in strain 17. In total, 76 US11 gene sequences have either canonical or known noncanonical intron border sequences and may be spliced like strain 17 and obtain mature US11 CDS with the same length. If not spliced, they will have extra RXP repeats. A tandemly repeated RXP domain was proposed to be essential for US11 to bind with RNA and other host factors. US10 protein sequences from the same strains have also been studied. The results of this study show that even a frequently used reference organism may have errors in widely used databases. This study provides accurate annotation of the US10, US11, and US12 gene structure, which will build a more solid foundation to study expression regulation of the function of these genes.


Assuntos
Herpesvirus Humano 1 , Íntrons , Proteínas Virais , Humanos , Sequência de Bases , Herpes Simples , Herpesvirus Humano 1/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37546823

RESUMO

Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3 % without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.

5.
6.
Methods Mol Biol ; 2599: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36427138

RESUMO

DNA-protein interactions (DPIs) are critical to all living organisms, particularly in the regulation of gene expression, replication, packing, recombination, and DNA repair, as well as RNA transport and translation. Many laboratory techniques have been developed to study the complex interactions of proteins with DNA, such as chromatin immunoprecipitation (ChIP) assays, DNA electrophoretic mobility shift assay (EMSA), and oligonucleotide pull-down assays. Here we describe an effective approach to identify potential DNA-binding proteins: a pull-down assay using DNA-conjugated beads with a customized competition strategy, which conferred a more effective and efficient approach to determine the interaction between DNA and protein(s), therefore dramatically improving the progress to investigate novel DNA-binding proteins.


Assuntos
Bioensaio , DNA , DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Oligonucleotídeos , Proteínas de Ligação a DNA/genética
7.
Viruses ; 14(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36560691

RESUMO

Previously, we reported that an HIV-1 variant containing Met-to-Ile change at codon 50 and Val-to-Ile mutation at codon 151 of integrase (IN), HIV(IN:M50I/V151I), was an impaired virus. Despite the mutations being in IN, the virus release was significantly suppressed (p < 0.0001) and the initiation of autoprocessing was inhibited; the mechanism of the defect remains unknown. In the current study, we attempted to identify the critical domains or amino acid (aa) residue(s) that promote defects in HIV(IN:M50I/V151I), using a series of variants, including truncated or aa-substituted RNase H (RH) or IN. The results demonstrated that virus release and the initiation of autoprocessing were regulated by the C-terminal domains (CTDs) of RH and IN. Further studies illustrated that Asp at codon 109 of RH CTD and Asp at the C terminus of IN induces the defect. This result indicated that the CTDs of RH and IN in GagPol and particular aa positions in RH and IN regulated the virus release and the initiation of autoprocessing, and these sites could be potential targets for the development of new therapies.


Assuntos
Infecções por HIV , Integrase de HIV , HIV-1 , Humanos , Ribonuclease H/genética , Ribonuclease H/química , Ribonuclease H/metabolismo , HIV-1/genética , HIV-1/metabolismo , Aminoácidos/genética , Liberação de Vírus , Integrase de HIV/genética , Integrase de HIV/química , Mutação
8.
iScience ; 25(11): 105352, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325059

RESUMO

Trace metals are essential for various physiological processes, but their roles in innate immunity have not been fully explored. Here, we found that manganese (Mn) significantly enhanced DNA-mediated IFN-α, IFN-ß, and IFN-λ1 production. Microarray analysis demonstrated Mn highly upregulated 351 genes, which were involved in multiple biological functions related to innate immune response. Moreover, we found that Mn2+ alone activates phosphorylation of TANK-binding kinase 1 (TBK1). Inhibiting ataxia telangiectasia mutated (ATM) kinase using ATM inhibitor or siRNA suppressed Mn-enhanced DNA-mediated immune response with decreasing phosphorylation of TBK-1, suggesting that ATM involves in Mn-dependent phosphorylation of TBK1. Given that TBK1 is an essential mediator in DNA- or RNA-mediated signaling pathways, we further demonstrated that Mn2+ suppressed infection of HSV-1 (DNA virus) or Sendai virus (RNA virus) into human macrophages by enhancing antiviral immunity. Our finding highlights a beneficial role of Mn in nucleic-acid-based preventive or therapeutic reagents against infectious diseases.

9.
Bioinformatics ; 38(12): 3192-3199, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35532087

RESUMO

MOTIVATION: The existence of quasispecies in the viral population causes difficulties for disease prevention and treatment. High-throughput sequencing provides opportunity to determine rare quasispecies and long sequencing reads covering full genomes reduce quasispecies determination to a clustering problem. The challenge is high similarity of quasispecies and high error rate of long sequencing reads. RESULTS: We developed QuasiSeq using a novel signature-based self-tuning clustering method, SigClust, to profile viral mixtures with high accuracy and sensitivity. QuasiSeq can correctly identify quasispecies even using low-quality sequencing reads (accuracy <80%) and produce quasispecies sequences with high accuracy (≥99.55%). Using high-quality circular consensus sequencing reads, QuasiSeq can produce quasispecies sequences with 100% accuracy. QuasiSeq has higher sensitivity and specificity than similar published software. Moreover, the requirement of the computational resource can be controlled by the size of the signature, which makes it possible to handle big sequencing data for rare quasispecies discovery. Furthermore, parallel computation is implemented to process the clusters and further reduce the runtime. Finally, we developed a web interface for the QuasiSeq workflow with simple parameter settings based on the quality of sequencing data, making it easy to use for users without advanced data science skills. AVAILABILITY AND IMPLEMENTATION: QuasiSeq is open source and freely available at https://github.com/LHRI-Bioinformatics/QuasiSeq. The current release (v1.0.0) is archived and available at https://zenodo.org/badge/latestdoi/340494542. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Quase-Espécies , Análise de Sequência de DNA , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Software
10.
Nucleic Acids Res ; 50(W1): W216-W221, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325185

RESUMO

DAVID is a popular bioinformatics resource system including a web server and web service for functional annotation and enrichment analyses of gene lists. It consists of a comprehensive knowledgebase and a set of functional analysis tools. Here, we report all updates made in 2021. The DAVID Gene system was rebuilt to gain coverage of more organisms, which increased the taxonomy coverage from 17 399 to 55 464. All existing annotation types have been updated, if available, based on the new DAVID Gene system. Compared with the last version, the number of gene-term records for most annotation types within the updated Knowledgebase have significantly increased. Moreover, we have incorporated new annotations in the Knowledgebase including small molecule-gene interactions from PubChem, drug-gene interactions from DrugBank, tissue expression information from the Human Protein Atlas, disease information from DisGeNET, and pathways from WikiPathways and PathBank. Eight of ten subgroups split from Uniprot Keyword annotation were assigned to specific types. Finally, we added a species parameter for uploading a list of gene symbols to minimize the ambiguity between species, which increases the efficiency of the list upload and eliminates confusion for users. These current updates have significantly expanded the Knowledgebase and enhanced the discovery power of DAVID.


Assuntos
Bases de Dados Genéticas , Software , Humanos , Biologia Computacional , Computadores , Bases de Conhecimento , Anotação de Sequência Molecular , Internet
11.
Viruses ; 14(3)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35336943

RESUMO

Herpes simplex virus type 2 (HSV-2) is a common causative agent of genital tract infections. Moreover, HSV-2 and HIV infection can mutually increase the risk of acquiring another virus infection. Due to the high GC content and highly repetitive regions in HSV-2 genomes, only the genomes of four strains have been completely sequenced (HG52, 333, SD90e, and MS). Strain G is commonly used for HSV-2 research, but only a partial genome sequence has been assembled with Illumina sequencing reads. In the current study, we de novo assembled and annotated the complete genome of strain G using PacBio long sequencing reads, which can span the repetitive regions, analyzed the 'α' sequence, which plays key roles in HSV-2 genome circulation, replication, cleavage, and packaging of progeny viral DNA, identified the packaging signals homologous to HSV-1 within the 'α' sequence, and determined both termini of the linear genome and cleavage site for the process of concatemeric HSV-2 DNA produced via rolling-circle replication. In addition, using Oxford Nanopore Technology sequencing reads, we visualized four HSV-2 genome isomers at the nucleotide level for the first time. Furthermore, the coding sequences of HSV-2 strain G have been compared with those of HG52, 333, and MS. Moreover, phylogenetic analysis of strain G and other diverse HSV-2 strains has been conducted to determine their evolutionary relationship. The results will aid clinical research and treatment development of HSV-2.


Assuntos
Infecções por HIV , Herpes Simples , DNA Viral/genética , Genoma Viral , Infecções por HIV/genética , Herpes Simples/genética , Herpesvirus Humano 2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
12.
AIDS Res Hum Retroviruses ; 38(5): 401-405, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35045753

RESUMO

S100A8 and S100A9 are members of the Alarmin family; these proteins are abundantly expressed in neutrophils, form a heterodimer complex, and are secreted in plasma on pathogen infection or acute inflammatory diseases. Recently, both proteins were identified as novel biomarkers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and were shown to play key roles in inducing an aggressive inflammatory response by mediating the release of large amounts of pro-inflammatory cytokines, called the "cytokine storm." Although co-infection with SARS-CoV-2 in people living with HIV-1 may result in an immunocompromised status, the role of the S100A8/A9 complex in HIV-1 replication in primary T cells and macrophages is still unclear. Here, we evaluated the roles of the proteins in HIV replication to elucidate their functions. We found that the complex had no impact on virus replication in both cell types; however, the subunits of S100A8 and S100A9 inhibit HIV in macrophages. These findings provide important insights into the regulation of HIV viral loads during SARS-CoV-2 co-infection.


Assuntos
COVID-19 , Coinfecção , Infecções por HIV , Biomarcadores/metabolismo , Calgranulina A/metabolismo , Calgranulina B , Infecções por HIV/metabolismo , Humanos , Macrófagos , SARS-CoV-2 , Replicação Viral
13.
Front Cell Infect Microbiol ; 11: 761983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746031

RESUMO

Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.


Assuntos
Reparo do DNA , DNA , Autoantígeno Ku/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Imunidade Inata , Autoantígeno Ku/genética
14.
Viruses ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835137

RESUMO

We have recently reported that a recombinant HIV-1NL4.3 containing Met-to-Ile change at codon 50 of integrase (IN) (IN:M50I) exhibits suppression of the virus release below 0.5% of WT HIV, and the released viral particles are replication-incompetent due to defects in Gag/GagPol processing by inhibition of the initiation of autoprocessing of GagPol polyproteins in the virions and leads to replication-incompetent viruses. The coexisting Ser-to-Asn change at codon 17 of IN or Asn-to-Ser mutation at codon 79 of RNaseH (RH) compensated the defective IN:M50I phenotype, suggesting that both IN and RH regulate an HIV infectability. In the current study, to elucidate a distribution of the three mutations during anti-retroviral therapy among patients, we performed a population analysis using 529 plasma virus RNA sequences obtained through the MiSeq. The result demonstrated that 14 plasma HIVs contained IN:M50I without the compensatory mutations. Comparing the sequences of the 14 viruses with that of the defective virus illustrated that only Val-to-Ile change at codon 151 of IN (IN:V151I) existed in the recombinant virus. This IN:V151I is known as a polymorphic mutation and was derived from HIVNL4.3 backbone. A back-mutation at 151 from Ile-to-Val in the defective virus recovered HIV replication capability, and Western Blotting assay displayed that the back-mutation restored Gag/GagPol processing in viral particles. These results demonstrate that a combination of IN:M50I and IN:V151I mutations, but not IN:M50I alone, produces a defective virus.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/virologia , Inibidores de Integrase de HIV/uso terapêutico , HIV-1 , Células Cultivadas , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Leucócitos Mononucleares , Mutação
15.
bioRxiv ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34704091

RESUMO

S100A8 and S100A9 are members of the Alarmin family; these proteins are abundantly expressed in neutrophils and form a heterodimer complex. Recently, both proteins were identified as novel biomarkers of SARS-CoV-2 infection and were shown to play key roles in inducing an aggressive inflammatory response by mediating the release of large amounts of pro-inflammatory cytokines, called the "cytokine storm." Although co-infection with SARS-CoV-2 in people living with HIV-1 may result in an immunocompromised status, the role of the S100A8/A9 complex in HIV-1 replication in primary T cells and macrophages is still unclear. Here, we evaluated the roles of the proteins in HIV replication to elucidate their functions. We found that the complex had no impact on virus replication in both cell types; however, the subunits of S100A8 and S100A9 inhibits HIV in macrophages. These findings provide important insights into the regulation of HIV viral loads in SARS-CoV2 co-infection.

16.
J Virol ; 95(23): e0132321, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523971

RESUMO

Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.


Assuntos
Integrase de HIV/metabolismo , HIV-1/fisiologia , Ribonuclease H/metabolismo , Liberação de Vírus/fisiologia , Antirretrovirais/farmacologia , Produtos do Gene gag/genética , Células HEK293 , Infecções por HIV , Integrase de HIV/genética , HIV-1/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Proteólise , Ribonuclease H/genética , Vírion/metabolismo , Replicação Viral
17.
Sci Rep ; 11(1): 14898, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290273

RESUMO

Interleukin-27 (IL-27) is a cytokine that suppresses human immunodeficiency virus (HIV)-1 infection in macrophages and is considered as an immunotherapeutic reagent for infectious diseases. It is reported that IL-27 suppresses autophagy in Mycobacterium tuberculosis-infected macrophages; however, a role for IL-27 on autophagy induction has been less studied. In this study, we investigated the impact of IL-27 in both autophagy induction and HIV-1 infection in macrophages. Primary human monocytes were differentiated into macrophages using human AB serum (huAB) alone, macrophage-colony stimulating factor (M-CSF) alone, or a combination of IL-27 with huAB or M-CSF. Electron microscopy and immunofluorescence staining demonstrated that a 20-fold increase in autophagosome formation was only detected in IL-27 + huAB-induced macrophages. Western blot analysis indicated that the autophagosome induction was not linked to either dephosphorylation of the mammalian target of rapamycin (mTOR) or lipidation of microtubule-associated protein 1A/1B-light chain 3 (LC3), an autophagosomal marker, implying that IL-27 can induce autophagy through a novel non-canonical pathway. Here we show for the first time that IL-27 induces autophagy during monocyte-to-macrophage differentiation in a subtype-dependent manner.


Assuntos
Autofagia/efeitos dos fármacos , Interleucinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Proteínas Associadas aos Microtúbulos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Diferenciação Celular , Células Cultivadas , Humanos , Monócitos/fisiologia
19.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525571

RESUMO

Interleukin-27 (IL-27) is a pleiotropic cytokine that influences the innate and adaptive immune systems. It inhibits viral infection and regulates the expression of microRNAs (miRNAs). We recently reported that macrophages differentiated from human primary monocytes in the presence of IL-27 and human AB serum resisted human immunodeficiency virus (HIV) infection and showed significant autophagy induction. In the current study, the miRNA profiles in these cells were investigated, especially focusing on the identification of novel miRNAs regulated by IL-27-treatment. The miRNA sequencing analysis detected 38 novel miRNAs. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that IL-27 differentially regulated the expression of 16 of the 38 miRNAs. Overexpression of the synthesized miRNA mimics by transfection revealed that miRAB40 had potent HIV-inhibiting and autophagy-inducing properties. B18R, an interferon (IFN)-neutralization protein, partially suppressed both activities, indicating that the two functions were induced via IFN-dependent and -independent pathways. Although the target mRNA(s) of miRAB40 involving in the induction of both functions was unable to identify in this study, the discovery of miRAB40, a potential HIV-inhibiting and autophagy inducing miRNA, may provide novel insights into the miRNA (small none-coding RNA)-mediated regulation of HIV inhibition and autophagy induction as an innate immune response.


Assuntos
Perfilação da Expressão Gênica/métodos , HIV-1/fisiologia , Interleucina-27/farmacologia , Macrófagos/citologia , MicroRNAs/genética , Autofagia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Interferons/metabolismo , Macrófagos/química , Macrófagos/virologia , MicroRNAs/farmacologia , Análise de Sequência de RNA , Soro/química , Replicação Viral
20.
Immunology ; 163(3): 323-337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33548066

RESUMO

We have previously identified that human Ku70, a nuclear protein, serves as a cytosolic DNA sensor. Upon transfection with DNA or infection with DNA virus, Ku70 translocates from the nucleus into the cytoplasm and then predominately induces interferon lambda1 (IFN-λ1) rather than IFN-alpha or IFN-beta, through a STING-dependent signalling pathway. However, a detailed mechanism for Ku70 cytoplasmic translocation and its correlation with IFN-λ1 induction have not been fully elucidated. Here, we observed that cytoplasmic translocation of Ku70 only occurred in DNA-triggered IFN-λ1-inducible cells. Additionally, infection by Herpes simplex virus type-1 (HSV-1), a DNA virus, induces cytoplasmic translocation of Ku70 and IFN-λ1 induction in a strain-dependent manner: the translocation and IFN-λ1 induction were detected upon infection by HSV-1 McKrae, but not MacIntyre, strain. A kinetic analysis indicated that cytoplasmic translocation of Ku70 was initiated right after DNA transfection and was peaked at 6 hr after DNA stimulation. Furthermore, treatment with leptomycin B, a nuclear export inhibitor, inhibited both Ku70 translocation and IFN-λ1 induction, suggesting that Ku70 translocation is an essential and early event for its cytosolic DNA sensing. We further confirmed that enhancing the acetylation status of the cells promotes Ku70's cytoplasmic accumulation, and therefore increases DNA-mediated IFN-λ1 induction. These findings provide insights into the molecular mechanism by which the versatile sensor detects pathogenic DNA in a localization-dependent manner.


Assuntos
Citoplasma/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Autoantígeno Ku/metabolismo , Acetilação , Antibióticos Antineoplásicos/farmacologia , DNA Viral/genética , DNA Viral/imunologia , Ácidos Graxos Insaturados/farmacologia , Células HEK293 , Humanos , Interferons/genética , Espaço Intracelular/genética , Espaço Intracelular/imunologia , Transporte Proteico , Especificidade da Espécie , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...